Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
The Korean Journal of Parasitology ; : 155-161, 2022.
Article in English | WPRIM | ID: wpr-939143

ABSTRACT

All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.

2.
The Korean Journal of Parasitology ; : 501-505, 2021.
Article in English | WPRIM | ID: wpr-919314

ABSTRACT

The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri–induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.

3.
The Korean Journal of Parasitology ; : 205-210, 2020.
Article | WPRIM | ID: wpr-833753

ABSTRACT

Echinococcosis occurs mainly in areas with heavy livestock farming, such as Central Asia, America, and Australia. Echinococcus granulosus sensu lato (s.l.) infection causes echinococcosis in intermediate hosts, such as sheep, cattle, goats, camels, and horses. Numerous cases of echinococcosis occur in Uzbekistan as stock farming is a primary industry. Epidemiological and genetic studies of E. granulosus s.l. are very important for mitigating its impact on public health and the economy; however, there are no such studies on E. granulosus s.l. in Uzbekistan. In the present study, to determine which genotypes exist and are transmitted, we isolated Echinococcus sp. from definitive hosts (one isolate each from jackal and dog) and intermediate hosts (52 isolates from humans and 6 isolates from sheep) in Uzbekistan and analyzed the isolates by sequencing 2 mitochondrial DNA components (cox1 and nad1). The results showed that all of isolates except one belonged to the E. granulosus sensu stricto (s.s.) G1 and G3 genotypes. Phylogenetic analysis based on cox1 sequences showed that 42 isolates from humans, 6 isolates from sheep, and one isolate from jackal were the G1 genotype, whereas the remaining 8 isolates from human and the one isolate from dog were the G3 genotype. These results suggest that the G1 and G3 genotypes of E. granulosus s.s. are predominant in Uzbekistan, and both wild animals and domestic animals are important for maintaining their life cycle. Only one isolate from human sample was confirmed to be E. eqiinus (G4 genotype), which is known to be for the first time.

4.
The Korean Journal of Parasitology ; : 549-552, 2019.
Article in English | WPRIM | ID: wpr-761767

ABSTRACT

This study aimed to determine the prevalence of intestinal helminth parasitic infections and associated risk factors for the human infection among the people of Samarkand, Uzbekistan. Infection status of helminths including Echinococcus granulosus was surveyed in domestic and wild animals from 4 sites in the Samarkand region, Uzbekistan during 2015–2018. Fecal samples of each animal were examined with the formalin-ether sedimentation technique and the recovery of intestinal helminths was performed with naked eyes and a stereomicroscope in total 1,761 animals (1,755 dogs, 1 golden jackal, and 5 Corsac foxes). Total 658 adult worms of E. granulosus were detected in 28 (1.6%) dogs and 1 (100%) golden jackal. More than 6 species of helminths, i.e., Taenia hydatigena, Dipylidium caninum, Diplopylidium nolleri, Mesocestoides lineatus, Toxocara canis, and Trichuris vulpis, were found from 18 (1.0%) dogs. Six (T. hydatigena, Toxascaris leonina, Alaria alata, Uncinaria stenocephala, D. caninum, and M. lineatus) and 2 (D. nolleri and M. lineatus) species of helminths were also detected from 5 Corsac foxes and 1 golden jackal, respectively. Taeniid eggs were found in 2 (20%) out of 10 soil samples. In the present study, it was confirmed that the prevalences of helminths including E. granulosus are not so high in domestic and wild animals. Nevertheless, the awareness on the zoonotic helminth infections should be continuously maintained in Uzbekistan for the prevention of human infection.


Subject(s)
Adult , Animals , Dogs , Humans , Ancylostomatoidea , Animals, Wild , Echinococcus granulosus , Eggs , Foxes , Helminths , Jackals , Mesocestoides , Ovum , Prevalence , Risk Factors , Soil , Taenia , Toxascaris , Toxocara canis , Trichuris , Uzbekistan
5.
The Korean Journal of Parasitology ; : 679-684, 2017.
Article in English | WPRIM | ID: wpr-58755

ABSTRACT

Echinococcus granulosus sensu lato (s.l.) is a causative agent of cystic echinococcosis or cystic hydatid disease in humans and domestic and wild animals. The disease is a serious health problem in countries associated with poverty and poor hygiene practices, particularly in livestock raising. We introduced a practical algorism for genotyping the parasite, which may be useful to many developing countries. To evaluate the efficiency of the algorism, we genotyped 3 unknown strains isolated from human patients. We found that unknowns 1 and 3 were included in G1, G2, and G3 genotypes group and unknown 2 was included in G4 genotype (Echinococcus equinus) according to the algorisms. We confirmed these results by sequencing the 3 unknown isolates cox1 and nad1 PCR products. In conclusion, these new algorisms are very fast genotype identification tools that are suitable for evaluating E. granulosus s.l. isolated from livestock or livestock holders, particularly in developing countries.


Subject(s)
Animals , Humans , Animals, Wild , Developing Countries , Echinococcosis , Echinococcus granulosus , Echinococcus , Genotype , Hygiene , Livestock , Parasites , Polymerase Chain Reaction , Poverty
6.
Innovation ; : 38-42, 2016.
Article in English | WPRIM | ID: wpr-975525

ABSTRACT

Trichomonas vaginalis is a flagellated protozoan parasite that causes vaginitis and cervicitis in women and asymptomatic urethritis and prostatitis in men. Mast cells have been reported to be predominant in the vaginal smears and vaginal walls of patients infected with T. vaginalis. Mitogen activated protein kinase (MAPK) activated by various stimuli also regulate the transcriptional activity of various cytokine genes in the mast cells. Because of their essential role in intracellular signaling network, also appropriate targets for pharmacological treatment of inflammatory disorders.Cultivation of T.vaginalis and HMC-1 line, preparation of TvSP, to check intracellular ROS level and degranulation by FACS, to determine phosphorylation of MAPK and p47phox by immunobloting.In this study, we investigated whether MAPK were involved ROS generation and exocytotic degranulation in HMC-1 induced by T. vaginalis-derived secretory products (TvSP). We first examined that TvSP could induce activation of MAPK and NADPH oxidase in HMC-1 cells. Stimulation with TvSP induced phosphorylation of MAPK and p47phox in HMC-1 cells. Phosphorylation of p47phox is main source of ROS generation. Next, to determine involvement activation of MAPK in ROS generation and degranulation in HMC-1 cells induced by TvSP. ROS generation is required for exocytotic degranulation of mast cells induced by TvSP. Stimulation with TvSP induced phosphorylation of p47phox, ROSgeneration, and surface up-regulation of CD63 in human mast cells. CD63 is a marker for exocytosis. Pretreatment with MAPK inhibitors strongly inhibited TvSP-induced ROS generation and exocytotic degranulation.Our results suggest that TvSP could induce intracellular ROS generation and exocytotic degranulation in HMC-1 via MAPK signaling pathway.

7.
The Korean Journal of Parasitology ; : 597-603, 2015.
Article in English | WPRIM | ID: wpr-160903

ABSTRACT

Trichomonas vaginalis is a flagellated protozoan parasite that causes vaginitis and cervicitis in women and asymptomatic urethritis and prostatitis in men. Mast cells have been reported to be predominant in vaginal smears and vaginal walls of patients infected with T. vaginalis. Mitogen-activated protein kinase (MAPK), activated by various stimuli, have been shown to regulate the transcriptional activity of various cytokine genes in mast cells. In this study, we investigated whether MAPK is involved in ROS generation and exocytotic degranulation in HMC-1 cells induced by T. vaginalis-derived secretory products (TvSP). We found that TvSP induces the activation of MAPK and NADPH oxidase in HMC-1 cells. Stimulation with TvSP induced phosphorylation of MAPK and p47phox in HMC-1 cells. Stimulation with TvSP also induced up-regulation of CD63, a marker for exocytosis, along the surfaces of human mast cells. Pretreatment with MAPK inhibitors strongly inhibited TvSP-induced ROS generation and exocytotic degranulation. Finally, our results suggest that TvSP induces intracellular ROS generation and exocytotic degranulation in HMC-1 via MAPK signaling.


Subject(s)
Humans , Cell Degranulation , Cell Line , Exocytosis , Mast Cells/drug effects , Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Trichomonas vaginalis/metabolism , Virulence Factors/metabolism
8.
The Korean Journal of Parasitology ; : 459-469, 2014.
Article in English | WPRIM | ID: wpr-7401

ABSTRACT

Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-kappaB (p65) in Caco-2 cells. However, IkappaB, an inhibitor of NF-kappaB, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-kappaB was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-kappaB and STATs in colonic epithelial cells, which ultimately accelerates cell death.


Subject(s)
Humans , Caco-2 Cells , Calcium-Binding Proteins , Calpain/genetics , Caspase 3/genetics , Caspases , Cell Death , Colon/cytology , Entamoeba histolytica/physiology , Epithelial Cells/cytology , I-kappa B Proteins/metabolism , Intestinal Mucosa/cytology , NF-kappa B/genetics , RNA Interference , RNA, Small Interfering , STAT3 Transcription Factor/genetics , STAT5 Transcription Factor/genetics , Signal Transduction
9.
The Korean Journal of Parasitology ; : 355-365, 2014.
Article in English | WPRIM | ID: wpr-70517

ABSTRACT

The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.


Subject(s)
Humans , Apoptosis , Caspases/metabolism , Entamoeba histolytica/enzymology , Hydrolysis , Jurkat Cells , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , T-Lymphocytes/parasitology
10.
The Korean Journal of Parasitology ; : 61-68, 2013.
Article in English | WPRIM | ID: wpr-216693

ABSTRACT

Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.


Subject(s)
Humans , Cell Death , Cell Line , Entamoeba histolytica/pathogenicity , Epithelial Cells/metabolism , Host-Pathogen Interactions , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
11.
The Korean Journal of Parasitology ; : 177-180, 2011.
Article in English | WPRIM | ID: wpr-47943

ABSTRACT

Entamoeba histolytica is an enteric tissue-invading protozoan parasite that can cause amebic colitis and liver abscess in humans. E. histolytica has the capability to kill colon epithelial cells in vitro; however, information regarding the role of calpain in colon cell death induced by ameba is limited. In this study, we investigated whether calpains are involved in the E. histolytica-induced cell death of HT-29 colonic epithelial cells. When HT-29 cells were co-incubated with E. histolytica, the propidium iodide stained dead cells markedly increased compared to that in HT-29 cells incubated with medium alone. This pro-death effect induced by ameba was effectively blocked by pretreatment of HT-29 cells with the calpain inhibitor, calpeptin. Moreover, knockdown of m- and micro-calpain by siRNA significantly reduced E. histolytica-induced HT-29 cell death. These results suggest that m- and micro-calpain may be involved in colon epithelial cell death induced by E. histolytica.


Subject(s)
Humans , Calpain/antagonists & inhibitors , Cell Death , Cell Line , Cell Survival/drug effects , Dipeptides/metabolism , Entamoeba histolytica/pathogenicity , Epithelial Cells/parasitology , Gene Knockdown Techniques
12.
The Korean Journal of Parasitology ; : 291-294, 2011.
Article in English | WPRIM | ID: wpr-182102

ABSTRACT

Trichomonas vaginalis is a flagellated lumen-dwelling extracellular protozoan parasite that causes human trichomoniasis via sexual intercourse. Human neutrophils play a crucial role in acute tissue inflammatory responses in T. vaginalis infection. In this study, we investigated the signaling mechanism of neutrophil responses when stimulated with T. vaginalis-derived secretory products (TvSP), which were collected from 1x10(7) live trichomonads. Incubation of human neutrophils isolated from peripheral blood with TvSP induced up-regulation of IL-8 protein secretion. In addition, stimulation with TvSP induced phosphorylation of NF-kappaB and CREB in neutrophils. Moreover, TvSP-induced IL-8 production was also significantly inhibited by pretreatment of neutrophils with ikappaB inhibitor or CREB inhibitor. These results suggest that transcription factors NF-kappaB and CREB are involved in IL-8 production in human neutrophils induced by stimulation with T. vaginalis infection.


Subject(s)
Humans , Male , Cyclic AMP Response Element-Binding Protein/metabolism , Human Experimentation , Interleukin-8/metabolism , NF-kappa B/metabolism , Neutrophils/immunology , Phosphorylation , Trichomonas vaginalis/immunology
13.
The Korean Journal of Parasitology ; : 79-83, 2011.
Article in English | WPRIM | ID: wpr-222443

ABSTRACT

Trichomoniasis is a sexually transmitted disease due to infection with Trichomonas vaginalis, and it can cause serious consequences for women's health. To study the virulence factors of this pathogen, T. vaginalis surface proteins were investigated using polyclonal antibodies specific to the membrane fractions of T. vaginalis. The T. vaginalis expression library was constructed by cloning the cDNA derived from mRNA of T. vaginalis into a phage lambda Uni-ZAP XR vector, and then used for immunoscreening with the anti-membrane proteins of T. vaginalis antibodies. The immunoreactive proteins identified included adhesion protein AP65-1, alpha-actinin, kinesin-associated protein, teneurin, and 2 independent hypothetical proteins. Immunofluorescence assays showed that AP65-1, one of the identified immunogenic clones, is prevalent in the whole body of T. vaginalis. This study led us to identify T. vaginalis proteins which may stimulate immune responses by human cells.


Subject(s)
Animals , Female , Humans , Rats , Antigens, Protozoan/genetics , Molecular Sequence Data , Protozoan Proteins/genetics , Trichomonas Infections/parasitology , Trichomonas vaginalis/genetics
14.
The Korean Journal of Parasitology ; : 285-290, 2010.
Article in English | WPRIM | ID: wpr-80783

ABSTRACT

Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica. In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2. Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica.


Subject(s)
Humans , Apoptosis , Cells, Cultured , Entamoeba histolytica/immunology , GPI-Linked Proteins/metabolism , Genistein/metabolism , Neutrophils/immunology , Protein Kinase Inhibitors/metabolism , Pyrimidines/metabolism , Reactive Oxygen Species/metabolism , Receptors, IgG/metabolism , src-Family Kinases/antagonists & inhibitors
15.
Hanyang Medical Reviews ; : 238-245, 2010.
Article in Korean | WPRIM | ID: wpr-200114

ABSTRACT

Eosinophils are primarily tissue resident cells, and play important roles in host's immune responses and maintenance of chronic infection during infection with tissue-invasive parasitic helminth. Such parasite secretes particular molecules to evade eosinophil-mediated helminthotoxicity. Continuous competition between eosinophil and parasite leads to stable equilibria between them. Recent evidence provides a concept that not only eosinophils contribute to parasite's survival but also parasite modulates host's immune response. Therefore, it is important to know complex interrelationship between eosinophil and parasite to understand how gently parasite talk to eosinophils and how carefully eosinophils listen to parasite's voice. In this regard, this review examin papers about eosinophil-mediated tissue inflammatory responses in response to helminthic parasite.


Subject(s)
Eosinophils , Helminths , Parasites , Voice
16.
The Korean Journal of Parasitology ; : 287-291, 2009.
Article in English | WPRIM | ID: wpr-191532

ABSTRACT

The alpha/beta-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant alpha-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of alpha-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the alpha-tubulin gene from G. lamblia. PCR-RFLP analysis of this alpha-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B. The results indicate that alpha-tubulin can be used as a molecular probe to detect G. lamblia.


Subject(s)
Animals , Humans , Antigens, Protozoan/genetics , Base Sequence , Giardia lamblia/genetics , Giardiasis/diagnosis , Molecular Probes/genetics , Molecular Sequence Data , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Protozoan Proteins/genetics , Sequence Alignment , Tubulin/genetics
17.
The Korean Journal of Parasitology ; : S125-S131, 2009.
Article in English | WPRIM | ID: wpr-14765

ABSTRACT

Eosinophilic leukocytes function in host protection against parasitic worms. In turn, helminthic parasites harbor specific molecules to evade or paralyze eosinophil-associated host immune responses; these molecules facilitate the migration and survival of parasitic helminths in vivo. This competition between eosinophil and worm leads to stable equilibria between them. An understanding of such dynamic host-eosinophil interactions will help us to uncover mechanisms of cross talk between host and parasite in helminth infection. In this review, we examine recent findings regarding the innate immune responses of eosinophils to helminthic parasites, and discuss the implications of these findings in terms of eosinophil-mediated tissue inflammation in helminth infection.


Subject(s)
Animals , Humans , Eosinophils/immunology , Helminthiasis/immunology , Helminths/immunology , Host-Parasite Interactions
18.
The Korean Journal of Parasitology ; : 95-99, 2008.
Article in English | WPRIM | ID: wpr-188651

ABSTRACT

Eosinophil degranulation plays a crucial role in tissue inflammatory reactions associated with helminth parasitic nfections and allergic diseases. Paragonimus westermani, a lung fluke causing human paragonimiasis, secretes a large amount of cysteine proteases, which are involved in nutrient uptake, tissue invasion, and modulation of hos's immune responses. There is, however, limited information about the response of eosinophils to direct stimulation by cysteine proteases (CP) secreted by P. westermani. In the present study, we tested whether degranulation and superoxide production from human eosinophils can be induced by stimulation of the 2 CP (27 kDa and 28 kDa) purified from excretory-secretory products (ESP) of P. westermani newly excysted metacercariae (PwNEM). A large quantity of eosinophil-derived neurotoxin (EDN) was detected in the culture supernatant when human eosinophils isolated from the peripheral blood were incubated with the purified 27 kDa CP. Furthermore, the 27 kDa CP induced superoxide anion production by eosinophils in time- and dose-dependent manners. In contrast, the purified 28 kDa CP did not induce superoxide production and degranulation. These findings suggest that the 27 kDa CP secreted by PwNEM induces superoxide production and degranulation of human eosinophils, which may be involved in eosinophil-mediated tissue inflammatory responses during the larval migration in human paragonimiasis.


Subject(s)
Animals , Humans , Astacoidea/parasitology , Cell Degranulation , Cysteine Endopeptidases/immunology , Eosinophils/immunology , Helminth Proteins/immunology , Paragonimiasis/immunology , Paragonimus westermani/enzymology , Superoxides/immunology
19.
Journal of Korean Medical Science ; : 815-819, 2007.
Article in English | WPRIM | ID: wpr-176606

ABSTRACT

The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF- kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF- kappaB and JNK.


Subject(s)
Animals , Humans , Anthracenes/pharmacology , CD11b Antigen/biosynthesis , Cell Line, Tumor , Cell Membrane/metabolism , Eosinophils/metabolism , Flow Cytometry/methods , Gene Expression Regulation , Integrin alpha4/biosynthesis , Intercellular Adhesion Molecule-1/metabolism , Leukemia/metabolism , Leupeptins/pharmacology , Mitogen-Activated Protein Kinase 8/metabolism , NF-kappa B/metabolism , Pyroglyphidae , p38 Mitogen-Activated Protein Kinases/metabolism
20.
The Korean Journal of Parasitology ; : 33-37, 2005.
Article in English | WPRIM | ID: wpr-14971

ABSTRACT

Eosinophil degranulation is considered to be a key effector function for the killing of helminthic worms and tissue inflammation at worm-infected lesion sites. However, relatively little data are available with regard to eosinophil response after stimulation with worm-secreted products which contain a large quantity of cysteine proteases. In this study, we attempted to determine whether the degranulation of human eosinophils could be induced by the direct stimulation of the excretory-secretory products (ESP) of Paragonimus westermani, which causes pulmonary paragonimiasis in human beings. Incubation of eosinophils for 3 hr with Paragonimus-secreted products resulted in marked degranulation, as evidenced by the release of eosinophil-derived neurotoxin (EDN) in the culture supernatants. Moreover, superoxide anion was produced by eosinophils after stimulation of the ESP. The ESP-induced EDN release was found to be significantly inhibited when the ESP was pretreated with protease inhibitor cocktail or the cysteine protease inhibitor, E-64. These findings suggest that human eosinophils become degranulated in response to P. westermani-secreted proteases, which may contribute to in vivo tissue inflammation around the worms.


Subject(s)
Animals , Humans , Cell Degranulation , Cysteine Endopeptidases/metabolism , Eosinophil-Derived Neurotoxin/metabolism , Eosinophils/physiology , Paragonimus westermani/enzymology , Superoxides/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL